91 research outputs found

    Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval

    Get PDF
    In this research paper, we present a system for named entity recognition and automatic document classification in an innovative knowledge management system for Applied Gaming. The objective of this project is to facilitate the management of machine learning-based named entity recognition models, that can be used for both: extracting different types of named entities and classifying text documents from different sources on the Web. We present real-world use case scenarios and derive features for training and managing NER models with the Stanford NLP machine learning API. Then, the integration of our developed NER system with an expert rule-based system is presented, which allows an automatic classification of text documents into different taxonomy categories available in the knowledge management system. Finally, we present the results of two evaluations. First, a functional evaluation that demonstrates the portability of our NER system using a standard text corpus in the medical area. Second, a qualitative evaluation that was conducted to optimize the overall user interface of our system and enable a suitable integration into the target environment

    Parallelization Strategies for Graph-Code-Based Similarity Search

    Get PDF
    The volume of multimedia assets in collections is growing exponentially, and the retrieval of information is becoming more complex. The indexing and retrieval of multimedia content is generally implemented by employing feature graphs. Feature graphs contain semantic information on multimedia assets. Machine learning can produce detailed semantic information on multimedia assets, reflected in a high volume of nodes and edges in the feature graphs. While increasing the effectiveness of the information retrieval results, the high level of detail and also the growing collections increase the processing time. Addressing this problem, Multimedia Feature Graphs (MMFGs) and Graph Codes (GCs) have been proven to be fast and effective structures for information retrieval. However, the huge volume of data requires more processing time. As Graph Code algorithms were designed to be parallelizable, different paths of parallelization can be employed to prove or evaluate the scalability options of Graph Code processing. These include horizontal and vertical scaling with the use of Graphic Processing Units (GPUs), Multicore Central Processing Units (CPUs), and distributed computing. In this paper, we show how different parallelization strategies based on Graph Codes can be combined to provide a significant improvement in efficiency. Our modeling work shows excellent scalability with a theoretical speedup of 16,711 on a top-of-the-line Nvidia H100 GPU with 16,896 cores. Our experiments with a mediocre GPU show that a speedup of 225 can be achieved and give credence to the theoretical speedup. Thus, Graph Codes provide fast and effective multimedia indexing and retrieval, even in billion-scale use cases

    A Competence-Based Course Authoring Concept for Learning Platforms with Legacy Assignment Tools

    Get PDF
    This paper is concerned with several of the most important aspects of Competence-Based Learning (CBL): course authoring, assignments, and categorization of learning content. The latter is part of the so-called Bologna Process (BP) and can effectively be supported by integrating knowledge resources like, e.g., standardized skill and competence taxonomies into the target implementation approach, aiming at making effective use of an open integration architecture while fostering the interoperability of hybrid knowledge-based e-learning solutions. Modern scenarios ask for interoperable software solutions to seamlessly integrate existing e-learning infrastructures and legacy tools with innovative technologies while being cognitively efficient to handle. In this way, prospective users are enabled to use them without learning overheads. At the same time, methods of Learning Design (LD) in combination with CBL are getting more and more important for production and maintenance of easy to facilitate solutions. We present our approach of developing a competence-based course-authoring and assignment support software. It is bridging the gaps between contemporary Learning Management Systems (LMS) and established legacy learning infrastructures by embedding existing resources via Learning Tools Interoperability (LTI). Furthermore, the underlying conceptual architecture for this integration approach will be explained. In addition, a competence management structure based on knowledge technologies supporting standardized skill and competence taxonomies will be introduced. The overall goal is to develop a software solution which will not only flawlessly merge into a legacy platform and several other learning environments, but also remain intuitively usable. As a proof of concept, the so-called platform independent conceptual architecture model will be validated by a concrete use case scenario

    Informationstechnologische UnterstĂĽtzung der Archivierung biographischer Interviews und Erinnerungszeugnisse

    Get PDF
    Traditionelle Gedächtnisinstitutionen - Archive, Bibliotheken und Museen - stehen vor der Herausforderung der digitalen Transformation. Insbesondere, da Inhalte aus unterschiedlichen Gründen nur zum Teil online verfügbar sind, während die externe Nachfrage nach der Nutzung der vorhandenen Archivinhalte ständig steigt. Der Beitrag befasst sich daher mit Ansatzpunkten und Zielen eines künftigen Arbeitsprogramms, das die genannten Herausforderungen adressiert
    • …
    corecore